Use a for loop to plot multiple plots in 1 graph
I
have data in the following format, what I’m going to do is:
1) Iterate through each value
in the Region
2) For each region, plot a time series that aggregates (cross-category) sales quantities.
Date | Region | Category | Sales
01/01/2016| USA| Furniture|1
01/01/2016| USA| Clothes |0
01/01/2016| Europe| Furniture|2
01/01/2016| Europe| Clothes |0
01/02/2016| USA| Furniture|3
01/02/2016| USA| Clothes|0
01/02/2016| Europe| Furniture|4
01/02/2016| Europe| Clothes|0 …
The diagram should look similar to the attachment (done in Excel).
However, if I try to do this in Python using the code below, I get multiple charts when I really want all the lines to be displayed in one graph.
Python code:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_csv(r'C:\Users\wusm\Desktop\Book7.csv')
plt.legend()
for index, group in df.groupby(["Region"]):
group.plot(x='Date',y='Sales',title=str(index))
plt.show()
If the data is not reformatted, can someone suggest how to get the chart in one graph?
Solution
You can use pivot_table
:
df = df.pivot_table(index='Date', columns='Region', values='Sales', aggfunc='sum')
print (df)
Region Europe USA
Date
01/01/2016 2 1
01/02/2016 4 3
df = df.groupby(['Date', 'Region'])['Sales'].sum().unstack(fill_value=0)
print (df)
Region Europe USA
Date
01/01/2016 2 1
01/02/2016 4 3
Then DataFrame.plot
df.plot()